90 research outputs found

    Jointly Optimal Routing and Caching for Arbitrary Network Topologies

    Full text link
    We study a problem of fundamental importance to ICNs, namely, minimizing routing costs by jointly optimizing caching and routing decisions over an arbitrary network topology. We consider both source routing and hop-by-hop routing settings. The respective offline problems are NP-hard. Nevertheless, we show that there exist polynomial time approximation algorithms producing solutions within a constant approximation from the optimal. We also produce distributed, adaptive algorithms with the same approximation guarantees. We simulate our adaptive algorithms over a broad array of different topologies. Our algorithms reduce routing costs by several orders of magnitude compared to prior art, including algorithms optimizing caching under fixed routing.Comment: This is the extended version of the paper "Jointly Optimal Routing and Caching for Arbitrary Network Topologies", appearing in the 4th ACM Conference on Information-Centric Networking (ICN 2017), Berlin, Sep. 26-28, 201

    Truthful Linear Regression

    Get PDF
    We consider the problem of fitting a linear model to data held by individuals who are concerned about their privacy. Incentivizing most players to truthfully report their data to the analyst constrains our design to mechanisms that provide a privacy guarantee to the participants; we use differential privacy to model individuals' privacy losses. This immediately poses a problem, as differentially private computation of a linear model necessarily produces a biased estimation, and existing approaches to design mechanisms to elicit data from privacy-sensitive individuals do not generalize well to biased estimators. We overcome this challenge through an appropriate design of the computation and payment scheme.Comment: To appear in Proceedings of the 28th Annual Conference on Learning Theory (COLT 2015

    Learning Mixtures of Linear Classifiers

    Full text link
    We consider a discriminative learning (regression) problem, whereby the regression function is a convex combination of k linear classifiers. Existing approaches are based on the EM algorithm, or similar techniques, without provable guarantees. We develop a simple method based on spectral techniques and a `mirroring' trick, that discovers the subspace spanned by the classifiers' parameter vectors. Under a probabilistic assumption on the feature vector distribution, we prove that this approach has nearly optimal statistical efficiency

    Recommending with an Agenda: Active Learning of Private Attributes using Matrix Factorization

    Full text link
    Recommender systems leverage user demographic information, such as age, gender, etc., to personalize recommendations and better place their targeted ads. Oftentimes, users do not volunteer this information due to privacy concerns, or due to a lack of initiative in filling out their online profiles. We illustrate a new threat in which a recommender learns private attributes of users who do not voluntarily disclose them. We design both passive and active attacks that solicit ratings for strategically selected items, and could thus be used by a recommender system to pursue this hidden agenda. Our methods are based on a novel usage of Bayesian matrix factorization in an active learning setting. Evaluations on multiple datasets illustrate that such attacks are indeed feasible and use significantly fewer rated items than static inference methods. Importantly, they succeed without sacrificing the quality of recommendations to users.Comment: This is the extended version of a paper that appeared in ACM RecSys 201

    A Family of Tractable Graph Distances

    Full text link
    Important data mining problems such as nearest-neighbor search and clustering admit theoretical guarantees when restricted to objects embedded in a metric space. Graphs are ubiquitous, and clustering and classification over graphs arise in diverse areas, including, e.g., image processing and social networks. Unfortunately, popular distance scores used in these applications, that scale over large graphs, are not metrics and thus come with no guarantees. Classic graph distances such as, e.g., the chemical and the CKS distance are arguably natural and intuitive, and are indeed also metrics, but they are intractable: as such, their computation does not scale to large graphs. We define a broad family of graph distances, that includes both the chemical and the CKS distance, and prove that these are all metrics. Crucially, we show that our family includes metrics that are tractable. Moreover, we extend these distances by incorporating auxiliary node attributes, which is important in practice, while maintaining both the metric property and tractability.Comment: Extended version of paper appearing in SDM 201
    • …
    corecore